{ "id": "1605.06922", "version": "v1", "published": "2016-05-23T07:42:11.000Z", "updated": "2016-05-23T07:42:11.000Z", "title": "Quantitative C^1 - estimates on manifolds", "authors": [ "Batu Güneysu", "Stefano Pigola" ], "categories": [ "math.DG", "math.AP" ], "abstract": "We prove a $\\mathsf{C}^1$-elliptic estimate of the form $ \\sup_{B(x,r/2)} |\\mathrm{grad} (\\psi) | \\leq C \\left\\{ \\sup_{B(x,r)} |\\Delta \\psi| + \\sup_{B(x,r)} |\\psi| \\right\\}, $ valid on any complete Riemannian manifold $M$ and for any smooth function $\\psi$ which is defined in a nighbourhood of $B(x,r)$, with an explicit quantitative control on the constant $C=C(B(x,r))$ in terms of the curvature of the geodesic ball $B(x,r)\\subset M$.", "revisions": [ { "version": "v1", "updated": "2016-05-23T07:42:11.000Z" } ], "analyses": { "keywords": [ "complete riemannian manifold", "geodesic ball", "explicit quantitative control", "elliptic estimate", "smooth function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }