{ "id": "1605.06918", "version": "v1", "published": "2016-05-23T07:29:00.000Z", "updated": "2016-05-23T07:29:00.000Z", "title": "On the Roman domination number of generalized Sierpinski graphs", "authors": [ "Fatemeh Ramezani", "Erick D. Rodriguez-Bazan", "Juan A. Rodriguez-Velazquez" ], "categories": [ "math.CO" ], "abstract": "A map $f : V \\rightarrow \\{0, 1, 2\\}$ is a Roman dominating function on a graph $G=(V,E)$ if for every vertex $v\\in V$ with $f(v) = 0$, there exists a vertex $u$, adjacent to $v$, such that $f(u) = 2$. The weight of a Roman dominating function is given by $f(V) =\\sum_{u\\in V}f(u)$. The minimum weight of a Roman dominating function on $G$ is called the Roman domination number of $G$. In this article we study the Roman domination number of Generalized Sierpi\\'{n}ski graphs $S(G,t)$. More precisely, we obtain a general upper bound on the Roman domination number of $S(G,t)$ and we discuss the tightness of this bound. In particular, we focus on the cases in which the base graph $G$ is a path, a cycle, a complete graph or a graph having exactly one universal vertex.", "revisions": [ { "version": "v1", "updated": "2016-05-23T07:29:00.000Z" } ], "analyses": { "subjects": [ "05C69", "05C76" ], "keywords": [ "roman domination number", "generalized sierpinski graphs", "roman dominating function", "general upper bound", "universal vertex" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }