{ "id": "1605.06360", "version": "v1", "published": "2016-05-20T13:59:33.000Z", "updated": "2016-05-20T13:59:33.000Z", "title": "Eigenvalues of subgraphs of the cube", "authors": [ "Béla Bollobás", "Jonathan Lee", "Shoham Letzter" ], "comment": "27 pages", "categories": [ "math.CO" ], "abstract": "We consider the problem of maximising the largest eigenvalue of subgraphs of the hypercube $Q_d$ of a given order. We believe that in most cases, Hamming balls are maximisers, and our results support this belief. We show that the Hamming balls of radius $o(d)$ have largest eigenvalue that is within $1 + o(1)$ of the maximum value. We also prove that Hamming balls with fixed radius maximise the largest eigenvalue exactly, rather than asymptotically, when $d$ is sufficiently large. Our proofs rely on the method of compressions.", "revisions": [ { "version": "v1", "updated": "2016-05-20T13:59:33.000Z" } ], "analyses": { "keywords": [ "largest eigenvalue", "hamming balls", "maximum value", "results support", "fixed radius maximise" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }