{ "id": "1605.06294", "version": "v1", "published": "2016-05-20T11:29:18.000Z", "updated": "2016-05-20T11:29:18.000Z", "title": "Regularity of Minimizers of Shape Optimization Problems involving Perimeter", "authors": [ "Guido De Philippis", "Jimmy Lamboley", "Michel Pierre", "Bozhidar Velichkov" ], "categories": [ "math.OC" ], "abstract": "We prove existence and regularity of optimal shapes for the problem$$\\min\\Big\\{P(\\Omega)+\\mathcal{G}(\\Omega):\\ \\Omega\\subset D,\\ |\\Omega|=m\\Big\\},$$where $P$ denotes the perimeter, $|\\cdot|$ is the volume, and the functional $\\mathcal{G}$ is either one of the following:\\textless{}ul\\textgreater{}\\textless{}li\\textgreater{} the Dirichlet energy $E\\_f$, with respect to a (possibly sign-changing) function $f\\in L^p$;\\textless{}/li\\textgreater{}\\textless{}li\\textgreater{}a spectral functional of the form $F(\\lambda\\_{1},\\dots,\\lambda\\_{k})$, where $\\lambda\\_k$ is the $k$th eigenvalue of the Dirichlet Laplacian and $F:\\mathbb{R}^k\\to\\mathbb{R}$ is Lipschitz continuous and increasing in each variable.\\textless{}/li\\textgreater{}\\textless{}/ul\\textgreater{}The domain $D$ is the whole space $\\mathbb{R}^d$ or a bounded domain. We also give general assumptions on the functional $\\mathcal{G}$ so that the result remains valid.", "revisions": [ { "version": "v1", "updated": "2016-05-20T11:29:18.000Z" } ], "analyses": { "keywords": [ "shape optimization problems", "regularity", "minimizers", "result remains valid", "dirichlet energy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }