{ "id": "1605.06266", "version": "v1", "published": "2016-05-20T09:55:55.000Z", "updated": "2016-05-20T09:55:55.000Z", "title": "Invariants under deformation of the actions of topological groups", "authors": [ "Andrés Viña" ], "categories": [ "math.AT" ], "abstract": "Let $\\varphi$ and $\\varphi'$ be two homotopic actions of the topological group $G$ on the topological space $X$. To an object $A$ in the $G$-equivariant derived category $D_{\\varphi}(X)$ of $X$ relative to the action $\\varphi$ we associate an object $A'$ of category $D_{\\varphi'}(X)$, such that the corresponding $G$-equivariant compactly supported cohomologies $H_{G,c}(X,\\,A)$ and $H_{G,c}(X,\\,A')$ are isomorphic. When $G$ is a Lie group and $X$ is a subanalytic space, we prove that the $G$-equivariant cohomologies $H_{G}(X,\\,A)$ and $H_{G}(X,\\,A')$ are also isomorphic.", "revisions": [ { "version": "v1", "updated": "2016-05-20T09:55:55.000Z" } ], "analyses": { "keywords": [ "topological group", "invariants", "deformation", "lie group", "homotopic actions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }