{ "id": "1605.05764", "version": "v1", "published": "2016-05-18T21:47:56.000Z", "updated": "2016-05-18T21:47:56.000Z", "title": "Packing arborescences in random digraphs", "authors": [ "Carlos Hoppen", "Roberto F. Parente", "Cristiane M. Sato" ], "comment": "17 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "We study the problem of packing arborescences in the random digraph $\\mathcal D(n,p)$, where each possible arc is included uniformly at random with probability $p=p(n)$. Let $\\lambda(\\mathcal D(n,p))$ denote the largest integer $\\lambda\\geq 0$ such that, for all $0\\leq \\ell\\leq \\lambda$, we have $\\sum_{i=0}^{\\ell-1} (\\ell-i)|\\{v: d^{in}(v) = i\\}| \\leq \\ell$. We show that the maximum number of arc-disjoint arborescences in $\\mathcal D(n,p)$ is $\\lambda(\\mathcal D(n,p))$ a.a.s. We also give tight estimates for $\\lambda(\\mathcal D(n,p))$ depending on the range of $p$.", "revisions": [ { "version": "v1", "updated": "2016-05-18T21:47:56.000Z" } ], "analyses": { "subjects": [ "05C20", "05C80", "05D40", "05C05", "05C35" ], "keywords": [ "random digraph", "packing arborescences", "largest integer", "maximum number", "arc-disjoint arborescences" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }