{ "id": "1605.05084", "version": "v1", "published": "2016-05-17T09:57:21.000Z", "updated": "2016-05-17T09:57:21.000Z", "title": "Path decomposition of a spectrally negative Lévy process, and local time of a diffusion in this environment", "authors": [ "Grégoire Véchambre" ], "categories": [ "math.PR" ], "abstract": "We study the convergence in distribution of the supremum of the local time and of the favorite site for a transient diffusion in a spectrally negative L{\\'e}vy potential. To do so, we study the h-valleys of a spectrally negative L{\\'e}vy process, and we prove in partiular that the renormalized sequence of the h-minima converges to the jumping times sequence of a standard Poisson process.", "revisions": [ { "version": "v1", "updated": "2016-05-17T09:57:21.000Z" } ], "analyses": { "keywords": [ "spectrally negative lévy process", "local time", "path decomposition", "environment", "standard poisson process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }