{ "id": "1605.05038", "version": "v1", "published": "2016-05-17T07:08:09.000Z", "updated": "2016-05-17T07:08:09.000Z", "title": "Existence and multiplicity of solutions for a class of Choquard equations with Hardy-Littlewood-Sobolev critical exponent", "authors": [ "Fashun Gao", "Minbo Yang" ], "comment": "30", "categories": [ "math.AP" ], "abstract": "We consider the following nonlinear Choquard equation with Dirichlet boundary condition $$-\\Delta u =\\left(\\int_{\\Omega}\\frac{|u|^{2_{\\mu}^{\\ast}}}{|x-y|^{\\mu}}dy\\right)|u|^{2_{\\mu}^{\\ast}-2}u+\\lambda f(u)\\hspace{4.14mm}\\mbox{in}\\hspace{1.14mm} \\Omega, $$ where $\\Omega$ is a smooth bounded domain of $\\mathbb{R}^N$, $\\lambda>0$, $N\\geq3$, $0<\\mu