{ "id": "1605.04877", "version": "v1", "published": "2016-05-16T19:27:09.000Z", "updated": "2016-05-16T19:27:09.000Z", "title": "Borel version of the Local Lemma", "authors": [ "Endre Csóka", "Łukasz Grabowski", "András Máthé", "Oleg Pikhurko", "Konstantinos Tyros" ], "comment": "26 pages", "categories": [ "math.CO", "math.DS", "math.PR" ], "abstract": "We prove a Borel version of the local lemma, i.e. we show that, under suitable assumptions, if the set of variables in the local lemma has a structure of a Borel space, then there exists a satisfying assignment which is a Borel function. The main tool which we develop for the proof, which is of independent interest, is a parallel version of the Moser-Tardos algorithm which uses the same random bits to resample clauses that are far enough in the dependency graph.", "revisions": [ { "version": "v1", "updated": "2016-05-16T19:27:09.000Z" } ], "analyses": { "keywords": [ "local lemma", "borel version", "borel function", "dependency graph", "borel space" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }