{ "id": "1605.04751", "version": "v1", "published": "2016-05-16T12:55:00.000Z", "updated": "2016-05-16T12:55:00.000Z", "title": "Discrete Morse theory for the barycentric subdivision", "authors": [ "A. M Zhukova" ], "comment": "11 pages 3 figures", "categories": [ "math.AT", "math.CO" ], "abstract": "Let $F$ be a discrete Morse function on a simplicial complex $L$. We construct a discrete Morse function $\\Delta(F)$ on the barycentric subdivision $\\Delta(L)$. The constructed function $\\Delta(F)$ \"behaves the same way\" as $F$, i. e. has the same number of critical simplexes and the same gradient path structure.", "revisions": [ { "version": "v1", "updated": "2016-05-16T12:55:00.000Z" } ], "analyses": { "keywords": [ "discrete morse theory", "barycentric subdivision", "discrete morse function", "gradient path structure", "simplicial complex" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }