{ "id": "1605.04592", "version": "v1", "published": "2016-05-15T18:50:10.000Z", "updated": "2016-05-15T18:50:10.000Z", "title": "On a Theorem of S. N. Bernstein for Banach Spaces", "authors": [ "Asuman G. Aksoy", "Qidi Peng" ], "comment": "16 pages", "categories": [ "math.FA" ], "abstract": "This paper contains two improvements on a theorem of S. N. Bernstein for Banach spaces. We prove that if $X$ is an infinite-dimensional Banach space and $\\{Y_n\\}$ is a nested sequence of subspaces of $ X$ such that $ Y_n \\subset Y_{n+1}$ and $\\overline{Y_n} \\subset Y_{n+1}$ for any $ n \\in \\mathbb{N} $, and if $\\{d_n \\}$ be a decreasing sequence of positive numbers tending to 0, then for any $0< c\\leq 1$ there exists $ x_c \\in X$ such that the distance $\\rho(x_c, Y_n)$ from $x_c$ to $Y_n$ satisfies $$ c d_n \\leq \\rho(x_c,Y_n) \\leq 4c d_n. $$ We prove the above by first improving Borodin's result \\cite{Borodin} for Banach spaces by weakening the condition on the sequence $\\{d_n\\}$. Lastly, we compare subsequences $\\{d_{\\varphi(n)}\\}$ under different choices of $\\varphi(n)$ and examine their effects on approximation.", "revisions": [ { "version": "v1", "updated": "2016-05-15T18:50:10.000Z" } ], "analyses": { "subjects": [ "41A25", "41A50", "41A65", "46B20" ], "keywords": [ "infinite-dimensional banach space", "first improving borodins result", "paper contains", "decreasing sequence", "approximation" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }