{ "id": "1605.04371", "version": "v1", "published": "2016-05-14T03:31:23.000Z", "updated": "2016-05-14T03:31:23.000Z", "title": "Reflection principles for class groups", "authors": [ "Jack Klys" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "We present several new examples of reflection principles which apply to both class groups of number fields and picard groups of of curves over $\\mathbb{P}^{1}/\\mathbb{F}_{p}$. This proves a conjecture of Lemmermeyer about equality of 2-rank in subfields of $A_{4}$, up to a constant not depending on the discriminant in the number field case, and exactly in the function field case. More generally we prove similar relations for subfields of a Galois extension with group $G$ for the cases when $G$ is $S_{3}$, $S_{4}$, $A_{4}$, $D_{2l}$ and $\\mathbb{Z}/l\\mathbb{Z}\\rtimes\\mathbb{Z}/r\\mathbb{Z}$. The method of proof uses sheaf cohomology on 1-dimensional schemes, which reduces to Galois module computations.", "revisions": [ { "version": "v1", "updated": "2016-05-14T03:31:23.000Z" } ], "analyses": { "keywords": [ "class groups", "reflection principles", "number field case", "function field case", "galois module computations" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }