{ "id": "1605.04087", "version": "v1", "published": "2016-05-13T09:01:50.000Z", "updated": "2016-05-13T09:01:50.000Z", "title": "Every filter is homeomorphic to its square", "authors": [ "Andrea Medini", "Lyubomyr Zdomskyy" ], "comment": "4 pages", "categories": [ "math.GN", "math.LO" ], "abstract": "We show that every filter $\\mathcal{F}$ on $\\omega$, viewed as a subspace of $2^\\omega$, is homeomorphic to $\\mathcal{F}^2$. This generalizes a theorem of van Engelen, who proved that this holds for Borel filters.", "revisions": [ { "version": "v1", "updated": "2016-05-13T09:01:50.000Z" } ], "analyses": { "subjects": [ "54H99", "54E99", "03E05" ], "keywords": [ "homeomorphic", "van engelen", "borel filters" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }