{ "id": "1605.04012", "version": "v1", "published": "2016-05-13T00:14:43.000Z", "updated": "2016-05-13T00:14:43.000Z", "title": "Global properties of the symmetrized $s$-divergence", "authors": [ "Slavko Simic" ], "categories": [ "math.PR" ], "abstract": "In this paper we give a study of the symmetrized divergences $U_s(p,q)=K_s(p||q)+K_s(q||p)$ and $V_s(p,q)=K_s(p||q)K_s(q||p)$, where $K_s$ is the relative divergence of type $s, s\\in\\mathbb R$. Some basic properties as symmetry, monotonicity and log-convexity are established. An important result from the Convexity Theory is also proved.", "revisions": [ { "version": "v1", "updated": "2016-05-13T00:14:43.000Z" } ], "analyses": { "subjects": [ "60E15" ], "keywords": [ "global properties", "convexity theory", "important result", "basic properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }