{ "id": "1605.03850", "version": "v1", "published": "2016-05-12T15:04:35.000Z", "updated": "2016-05-12T15:04:35.000Z", "title": "The Myers-Steenrod theorem for Finsler manifolds of low regularity", "authors": [ "Vladimir S. Matveev", "Marc Troyanov" ], "comment": "14 pages", "categories": [ "math.DG" ], "abstract": "We prove a version of Myers-Steenrod's theorem for Finsler manifolds under minimal regularity hypothesis. In particular we show that an isometry between $C^{k,\\alpha}$-smooth (or partially smooth) Finsler metrics, with $k+\\alpha>0$, $k\\in \\mathbb{N} \\cup \\{0\\}$, and $0 \\leq \\alpha \\leq 1$ is necessary a diffeomorphism of class $C^{k+1,\\alpha}$. A generalisation of this result to the case of Finsler 1-quasiconformal mapping is given. The proofs are based on the reduction of the Finlserian problems to Riemannian ones with the help of the the Binet-Legendre metric.", "revisions": [ { "version": "v1", "updated": "2016-05-12T15:04:35.000Z" } ], "analyses": { "subjects": [ "53B40", "53C60", "35B65" ], "keywords": [ "finsler manifolds", "low regularity", "myers-steenrod theorem", "minimal regularity hypothesis", "myers-steenrods theorem" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }