{ "id": "1605.02776", "version": "v1", "published": "2016-05-02T11:57:31.000Z", "updated": "2016-05-02T11:57:31.000Z", "title": "Chebychev interpolations of the Gamma and Polygamma Functions and their analytical properties", "authors": [ "Karl Dieter Reinartz" ], "comment": "13 pages, 7 figures, 5 tables", "categories": [ "math.CA" ], "abstract": "Chebychev approximations are given for the Gamma and the Polygamma functions in only one contiguous intervall [1..inf] with a definable maximal relative error. The approximations need about three coefficients per decimal until a checked precision of 100 decimal digits.", "revisions": [ { "version": "v1", "updated": "2016-05-02T11:57:31.000Z" } ], "analyses": { "subjects": [ "33B15" ], "keywords": [ "polygamma functions", "chebychev interpolations", "analytical properties", "chebychev approximations", "definable maximal relative error" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }