{ "id": "1605.02586", "version": "v1", "published": "2016-05-09T13:53:23.000Z", "updated": "2016-05-09T13:53:23.000Z", "title": "Whitney Smooth Families of Invariant Tori within the Reversible Context 2 of KAM Theory", "authors": [ "Mikhail B. Sevryuk" ], "comment": "32 pages", "categories": [ "math.DS" ], "abstract": "We prove a general theorem on the persistence of Whitney infinitely smooth families of invariant tori in the reversible context 2 of KAM theory. This context refers to the situation where dim Fix G < (codim T)/2 where Fix G is the fixed point manifold of the reversing involution G and T is the invariant torus in question. Our result is obtained as a corollary of the theorem by H.W.Broer, M.-C.Ciocci, H.Hanssmann, and A.Vanderbauwhede of 2009 concerning quasi-periodic stability of invariant tori with singular \"normal\" matrices in reversible systems.", "revisions": [ { "version": "v1", "updated": "2016-05-09T13:53:23.000Z" } ], "analyses": { "subjects": [ "70K43", "70H33" ], "keywords": [ "invariant torus", "whitney smooth families", "kam theory", "reversible context", "whitney infinitely smooth families" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }