{ "id": "1605.02298", "version": "v1", "published": "2016-05-08T09:26:19.000Z", "updated": "2016-05-08T09:26:19.000Z", "title": "On the Real-rootedness of the Local $h$-polynomials of Edgewise Subdivisions of Simplexes", "authors": [ "Philip B. Zhang" ], "comment": "6 pages", "categories": [ "math.CO", "math.CA" ], "abstract": "Athanasiadis conjectured, for every positive integer $r$, the local $h$-polynomial of $r$th edgewise subdivision of any abstract complex has only real zeros. In this paper, we prove this conjecture by the method of interlacing polynomials, which recently has been widely developed.", "revisions": [ { "version": "v1", "updated": "2016-05-08T09:26:19.000Z" } ], "analyses": { "subjects": [ "26C10", "05E45", "52B45", "05A15" ], "keywords": [ "real-rootedness", "th edgewise subdivision", "abstract complex", "real zeros", "positive integer" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }