{ "id": "1605.01750", "version": "v1", "published": "2016-05-03T09:23:33.000Z", "updated": "2016-05-03T09:23:33.000Z", "title": "Some results on the spectral radii of uniform hypergraphs", "authors": [ "Liying Kang", "Lele Liu", "Liqun Qi", "Xiying Yuan" ], "categories": [ "math.CO" ], "abstract": "Let A(G) be the adjacency tensor (hypermatrix) of uniform hypergraph G. The maximum modulus of the eigenvalues of A(G) is called the spectral radius of G. In this paper, the conjecture of Fan et al. in [5] related to compare the spectral radii of some three uniform hypergraphs is solved. Moreover, some eigenvalues properties of a kind of uniform hypergraphs are obtained.", "revisions": [ { "version": "v1", "updated": "2016-05-03T09:23:33.000Z" } ], "analyses": { "subjects": [ "15A42", "05C50" ], "keywords": [ "uniform hypergraph", "spectral radius", "adjacency tensor", "maximum modulus", "eigenvalues properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }