{ "id": "1605.01256", "version": "v1", "published": "2016-05-04T12:51:44.000Z", "updated": "2016-05-04T12:51:44.000Z", "title": "Oscillation and variation for semigroups associated with Bessel operators", "authors": [ "Huoxiong Wu", "Dongyong Yang", "Jing Zhang" ], "comment": "20 pages", "categories": [ "math.AP" ], "abstract": "Let $\\lambda>0$ and $\\triangle_\\lambda:=-\\frac{d^2}{dx^2}-\\frac{2\\lambda}{x} \\frac d{dx}$ be the Bessel operator on $\\mathbb R_+:=(0,\\infty)$. We show that the oscillation operator ${\\mathcal O(P^{[\\lambda]}_\\ast)}$ and variation operator ${\\mathcal V}_\\rho(P^{[\\lambda]}_\\ast)$ of the Poisson semigroup $\\{P^{[\\lambda]}_t\\}_{t>0}$ associated with $\\Delta_\\lambda$ are both bounded on $L^p(\\mathbb R_+, dm_\\lambda)$ for $p\\in(1, \\infty)$, $BMO({{\\mathbb R}_+},dm_\\lambda)$, from $L^1({{\\mathbb R}_+},dm_\\lambda)$ to $L^{1,\\,\\infty}({{\\mathbb R}_+},dm_\\lambda)$, and from $H^1({{\\mathbb R}_+},dm_\\lambda)$ to $L^1({{\\mathbb R}_+},dm_\\lambda)$, where $\\rho\\in(2, \\infty)$ and $dm_\\lambda(x):=x^{2\\lambda}\\,dx$. As an application, an equivalent characterization of $H^1({{\\mathbb R}_+},dm_\\lambda)$ in terms of ${\\mathcal V}_\\rho(P^{[\\lambda]}_\\ast)$ is also established. All these results hold if $\\{P^{[\\lambda]}_t\\}_{t>0}$ is replaced by the heat semigroup $\\{W^{[\\lambda]}_t\\}_{t>0}$. }", "revisions": [ { "version": "v1", "updated": "2016-05-04T12:51:44.000Z" } ], "analyses": { "subjects": [ "42B20", "42B35", "42B30" ], "keywords": [ "bessel operator", "variation operator", "results hold", "poisson semigroup" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }