{ "id": "1605.01240", "version": "v1", "published": "2016-05-04T12:09:09.000Z", "updated": "2016-05-04T12:09:09.000Z", "title": "On Codimension one Embedding of Simplicial Complexes", "authors": [ "Anders Björner", "Afshin Goodarzi" ], "categories": [ "math.GT", "math.CO" ], "abstract": "We study $d$-dimensional simplicial complexes that are PL embeddable in $\\mathbb{R}^{d+1}$. It is shown that such a complex must satisfy a certain homological condition. The existence of this obstruction allows us to provide a systematic approach to deriving upper bounds for the number of top-dimensional faces of such complexes, particularly in low dimensions.", "revisions": [ { "version": "v1", "updated": "2016-05-04T12:09:09.000Z" } ], "analyses": { "keywords": [ "codimension", "dimensional simplicial complexes", "low dimensions", "systematic approach", "deriving upper bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }