{ "id": "1605.00853", "version": "v1", "published": "2016-05-02T17:05:22.000Z", "updated": "2016-05-02T17:05:22.000Z", "title": "A primitive associated to the Cantor-Bendixson derivative on the real line", "authors": [ "Borys Álvarez-Samaniego", "Andrés Merino" ], "comment": "23 pages", "categories": [ "math.GN" ], "abstract": "We consider the class of compact countable subsets of the real numbers $\\mathbb{R}$. By using an appropriate partition, up to homeomorphism, of this class we give a detailed proof of a result shown by S. Mazurkiewicz and W. Sierpinski related to the cardinality of this partition. Furthermore, for any compact subset of $\\mathbb{R}$, we show the existence of a \"primitive\" related to its Cantor-Bendixson derivative.", "revisions": [ { "version": "v1", "updated": "2016-05-02T17:05:22.000Z" } ], "analyses": { "subjects": [ "54A25", "03E15" ], "keywords": [ "real line", "cantor-bendixson derivative", "compact countable subsets", "real numbers", "appropriate partition" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }