{ "id": "1605.00605", "version": "v1", "published": "2016-05-02T18:27:53.000Z", "updated": "2016-05-02T18:27:53.000Z", "title": "Universal graphs at $\\aleph_{ω_1+1}$", "authors": [ "Jacob Davis" ], "categories": [ "math.LO" ], "abstract": "Starting from a supercompact cardinal we build a model in which $2^{\\aleph_{\\omega_1}}=2^{\\aleph_{\\omega_1+1}}=\\aleph_{\\omega_1+3}$ but there is a jointly universal family of size $\\aleph_{\\omega_1+2}$ of graphs on $\\aleph_{\\omega_1+1}$. The same technique will work for any uncountable cardinal in place of $\\omega_1$.", "revisions": [ { "version": "v1", "updated": "2016-05-02T18:27:53.000Z" } ], "analyses": { "subjects": [ "03E35", "03E55", "03E75" ], "keywords": [ "universal graphs", "supercompact cardinal", "jointly universal" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }