{ "id": "1605.00469", "version": "v1", "published": "2016-05-02T13:12:24.000Z", "updated": "2016-05-02T13:12:24.000Z", "title": "Spectra and probability distributions of thermal flux in turbulent Rayleigh-Bénard convection", "authors": [ "Hirdesh K. Pharasi", "Deepesh Kumar", "Krishna Kumar", "Jayanta K. Bhattacharjee" ], "comment": "22 pages, 6 figures", "categories": [ "physics.flu-dyn" ], "abstract": "The spectra of turbulent heat flux $\\mathrm{H}(k)$ in Rayleigh-B\\'{e}nard convection with and without uniform rotation are presented. The spectrum $\\mathrm{H}(k)$ scales with wave number $k$ as $\\sim k^{-2}$. The scaling exponent is almost independent of the Taylor number $\\mathrm{Ta}$ and Prandtl number $\\mathrm{Pr}$ for higher values of the reduced Rayleigh number $r$ ($ > 10^3$). The exponent, however, depends on $\\mathrm{Ta}$ and $\\mathrm{Pr}$ for smaller values of $r$ ($<10^3$). The probability distribution functions of the local heat fluxes are non-Gaussian and have exponential tails.", "revisions": [ { "version": "v1", "updated": "2016-05-02T13:12:24.000Z" } ], "analyses": { "keywords": [ "turbulent rayleigh-bénard convection", "thermal flux", "turbulent heat flux", "probability distribution functions", "local heat fluxes" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }