{ "id": "1604.08843", "version": "v1", "published": "2016-04-29T14:15:29.000Z", "updated": "2016-04-29T14:15:29.000Z", "title": "Extrapolation methods and Bethe ansatz for the asymmetric exclusion process", "authors": [ "Sylvain Prolhac" ], "comment": "20 pages, 2 figures, 1 table", "categories": [ "cond-mat.stat-mech", "math-ph", "math.MP", "nlin.SI" ], "abstract": "The one-dimensional asymmetric simple exclusion process (ASEP), where $N$ hard-core particles hop forward with rate $1$ and backward with rate $q<1$, is considered on a periodic lattice of $L$ site. Using KPZ universality and previous results for the totally asymmetric model $q=0$, precise conjectures are formulated for asymptotics at finite density $\\rho=N/L$ of ASEP eigenstates close to the stationary state. The conjectures are checked with high precision using extrapolation methods on finite size Bethe ansatz numerics. For weak asymmetry $1-q\\sim1/\\sqrt{L}$, double extrapolation combined with an integer relation algorithm gives an exact expression for the spectral gap up to $10$-th order in the asymmetry.", "revisions": [ { "version": "v1", "updated": "2016-04-29T14:15:29.000Z" } ], "analyses": { "keywords": [ "asymmetric exclusion process", "extrapolation methods", "one-dimensional asymmetric simple exclusion process", "finite size bethe ansatz numerics" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160408843P" } } }