{ "id": "1604.08655", "version": "v1", "published": "2016-04-29T00:27:59.000Z", "updated": "2016-04-29T00:27:59.000Z", "title": "Five-term relation and Macdonald polynomials", "authors": [ "Adriano Garsia", "Anton Mellit" ], "categories": [ "math.CO", "math.QA", "math.RT" ], "abstract": "The non-commutative five-term relation $T_{1,0} T_{0,1} = T_{0,1} T_{1,1} T_{1,0}$ is shown to hold for certain operators acting on symmetric functions. The \"generalized recursion\" conjecture of Bergeron and Haiman is a corollary of this result.", "revisions": [ { "version": "v1", "updated": "2016-04-29T00:27:59.000Z" } ], "analyses": { "keywords": [ "macdonald polynomials", "non-commutative five-term relation", "symmetric functions", "generalized recursion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160408655G" } } }