{ "id": "1604.08480", "version": "v1", "published": "2016-04-28T15:53:29.000Z", "updated": "2016-04-28T15:53:29.000Z", "title": "On the equivalence between $Θ_{n}$-spaces and iterated Segal spaces", "authors": [ "Rune Haugseng" ], "comment": "13 pages", "categories": [ "math.AT", "math.CT" ], "abstract": "We give a new proof of the equivalence between two of the main models for $(\\infty,n)$-categories, namely the $n$-fold Segal spaces of Barwick and the $\\Theta_{n}$-spaces of Rezk, by proving that these are algebras for the same monad on the $\\infty$-category of $n$-globular spaces. The proof works for a broad class of $\\infty$-categories that includes all $\\infty$-topoi.", "revisions": [ { "version": "v1", "updated": "2016-04-28T15:53:29.000Z" } ], "analyses": { "subjects": [ "18D05", "55U40" ], "keywords": [ "iterated segal spaces", "equivalence", "fold segal spaces", "main models", "broad class" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160408480H" } } }