{ "id": "1604.08378", "version": "v1", "published": "2016-04-28T11:31:03.000Z", "updated": "2016-04-28T11:31:03.000Z", "title": "Multiplicative chaos measures for a random model of the Riemann zeta function", "authors": [ "Eero Saksman", "Christian Webb" ], "categories": [ "math.PR", "math.NT" ], "abstract": "We prove convergence of a stochastic approximation of powers of the Riemann $\\zeta$ function to a non-Gaussian multiplicative chaos measure, and prove that this measure is a non-trivial multifractal random measure. The results cover both the subcritical and critical chaos. A basic ingredient of the proof is a 'good' Gaussian approximation of the induced random fields that is potentially of independent interest.", "revisions": [ { "version": "v1", "updated": "2016-04-28T11:31:03.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "random model", "non-trivial multifractal random measure", "non-gaussian multiplicative chaos measure", "independent interest" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160408378S" } } }