{ "id": "1604.08252", "version": "v1", "published": "2016-04-27T21:42:09.000Z", "updated": "2016-04-27T21:42:09.000Z", "title": "A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory", "authors": [ "Mark Kesseböhmer", "Sabrina Kombrink" ], "categories": [ "math.DS" ], "abstract": "We prove a complex Ruelle-Perron-Frobenius theorem for Markov shifts over an infinite alphabet, whence extending results by M. Pollicott from the finite to the infinite alphabet setting. As an application we obtain an extension of renewal theory in symbolic dynamics, as developed by S. P. Lalley and in the sequel generalised by the second author, now covering the infinite alphabet case.", "revisions": [ { "version": "v1", "updated": "2016-04-27T21:42:09.000Z" } ], "analyses": { "subjects": [ "37C30", "60K05", "28D99", "58C40" ], "keywords": [ "complex ruelle-perron-frobenius theorem", "infinite markov shifts", "renewal theory", "application", "infinite alphabet case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160408252K" } } }