{ "id": "1604.06931", "version": "v1", "published": "2016-04-23T18:11:32.000Z", "updated": "2016-04-23T18:11:32.000Z", "title": "Faces of graphical zonotopes", "authors": [ "Vladimir Grujić" ], "comment": "9 pages; 3 figures", "categories": [ "math.CO" ], "abstract": "It is a classical fact that the number of vertices of the graphical zonotope $Z_\\Gamma$ is equal to the number of acyclic orientations of a graph $\\Gamma$. We show that the $f$-polynomial of $Z_\\Gamma$ is obtained as the principal specialization of the $q$-analog of the chromatic symmetric function of $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2016-04-23T18:11:32.000Z" } ], "analyses": { "subjects": [ "52B05", "16T05" ], "keywords": [ "graphical zonotope", "chromatic symmetric function", "acyclic orientations", "principal specialization", "polynomial" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160406931G" } } }