{ "id": "1604.06323", "version": "v1", "published": "2016-04-21T14:30:51.000Z", "updated": "2016-04-21T14:30:51.000Z", "title": "Optimal constants for the mixed $\\left(\\ell_{\\frac{p}{p-1}}, \\ell_2\\right)$-Littlewood inequality", "authors": [ "Tony Nogueira" ], "categories": [ "math.FA" ], "abstract": "For $p > 2.18006$ we prove that optimal constants for the mixed $\\left( \\ell _{\\frac{p}{p-1}},\\ell _{2}\\right) $-Littlewood inequality for real-valued $m$% -linear forms on $\\ell _{p}\\times c_{0}\\times \\dots \\times c_{0}$ are $% \\left( 2^{\\frac{1}{2}-\\frac{1}{p}}\\right) ^{m-1}.$ As far as we know, this is the first example of Hardy--Littlewood inequalities for $m$-linear forms with optimal constants with exponential growth.", "revisions": [ { "version": "v1", "updated": "2016-04-21T14:30:51.000Z" } ], "analyses": { "keywords": [ "optimal constants", "littlewood inequality", "linear forms", "first example" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160406323N" } } }