{ "id": "1604.05019", "version": "v1", "published": "2016-04-18T07:22:38.000Z", "updated": "2016-04-18T07:22:38.000Z", "title": "Proof of a recent conjecture of Z.-W. Sun", "authors": [ "Song Guo", "Victor J. W. Guo" ], "comment": "4 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "The polynomials $d_n(x)$ are defined by \\begin{align*} d_n(x) &= \\sum_{k=0}^n{n\\choose k}{x\\choose k}2^k. \\end{align*} We prove that, for any prime $p$, the following congruences hold modulo $p$: \\begin{align*} \\sum_{k=0}^{p-1}\\frac{{2k\\choose k}}{4^k} d_k\\left(-\\frac{1}{4}\\right)^2 &\\equiv \\begin{cases} 2(-1)^{\\frac{p-1}{4}}x,&\\text{if $p=x^2+y^2$ with $x\\equiv 1\\pmod{4}$,} 0,&\\text{if $p\\equiv 3\\pmod{4}$,} \\end{cases} [5pt] \\sum_{k=0}^{p-1}\\frac{{2k\\choose k}}{4^k} d_k\\left(-\\frac{1}{6}\\right)^2 &\\equiv 0, \\quad\\text{if $p>3$,} [5pt] \\sum_{k=0}^{p-1}\\frac{{2k\\choose k}}{4^k} d_k\\left(\\frac{1}{4}\\right)^2 &\\equiv \\begin{cases} 0,&\\text{if $p\\equiv 1\\pmod{4}$,} (-1)^{\\frac{p+1}{4}}{\\frac{p-1}{2}\\choose \\frac{p-3}{4}},&\\text{if $p\\equiv 3\\pmod{4}$.} \\end{cases} \\sum_{k=0}^{p-1}\\frac{{2k\\choose k}}{4^k} d_k\\left(\\frac{1}{6}\\right)^2 &\\equiv 0, \\quad\\text{if $p>5$.} \\end{align*} The $p\\equiv 3\\pmod{4}$ case of the first one confirms a conjecture of Z.-W. Sun, while the second one confirms a special case of another conjecture of Z.-W. Sun.", "revisions": [ { "version": "v1", "updated": "2016-04-18T07:22:38.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10" ], "keywords": [ "conjecture", "congruences hold modulo", "special case", "polynomials" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160405019G" } } }