{ "id": "1604.04571", "version": "v1", "published": "2016-04-15T17:06:28.000Z", "updated": "2016-04-15T17:06:28.000Z", "title": "Level structures on abelian varieties and Vojta's conjecture", "authors": [ "Dan Abramovich", "Keerthi Madapusi Pera", "Anthony Várilly-Alvarado" ], "comment": "Appendix by Keerthi Madapusi Pera. 26 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "Assuming Vojta's conjecture, and building on recent work of the authors, we prove that, for a fixed number field $K$ and positive integer $g$, there is an integer $m_0$ such that for any $m > m_0$ there is no principally polarized abelian variety $A/K$ of dimension $g$ with full level-$m$ structure. To this end, we develop a version of Vojta's conjecture for Deligne-Mumford stacks, which we deduce from Vojta's conjecture for schemes.", "revisions": [ { "version": "v1", "updated": "2016-04-15T17:06:28.000Z" } ], "analyses": { "subjects": [ "14K10", "14K15", "11G35", "11G18" ], "keywords": [ "level structures", "deligne-mumford stacks", "assuming vojtas conjecture", "fixed number field", "principally polarized abelian variety" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160404571A" } } }