{ "id": "1604.04385", "version": "v1", "published": "2016-04-15T07:37:13.000Z", "updated": "2016-04-15T07:37:13.000Z", "title": "D-Solutions to the System of Vectorial Calculus of Variations in L-infinity via the Baire Category Method for the Singular Values", "authors": [ "Gisella Croce", "Nikos Katzourakis", "Giovanni Pisante" ], "categories": [ "math.AP" ], "abstract": "For $\\mathrm{H}\\in C^2(\\R^{N\\by n})$ and $u :\\Om \\sub \\R^n \\larrow \\R^N$, consider the system \\[ \\label{1}\\mathrm{A}\\_\\infty u\\, :=\\,\\Big(\\mathrm{H}\\_P \\ot \\mathrm{H}\\_P + \\mathrm{H}[\\mathrm{H}\\_P]^\\bot \\mathrm{H}\\_{PP}\\Big)(\\D u):\\D^2u\\, =\\,0. \\tag{1}\\]The PDE system \\eqref{1} is associated to the supremal functional\\[ \\label{2}\\ \\ \\ \\ \\mathrm{E}\\_\\infty(u,\\Omega')\\, =\\, \\big\\| \\mathrm{H}(\\D u)\\|\\_{L^\\infty(\\Om')}, \\ \\ \\ u\\in W^{1,\\infty}\\_{\\text{loc}}(\\Om,\\R^N),\\ \\Omega'\\Subset \\Omega, \\tag{2} \\]and first arose in recent work of the 2nd author as the analogue of the Euler-Lagrange equation. Herein we employ the Dacorogna-Marcellini Baire Category method to construct $\\mD$-solutions to the Dirichlet problem for \\eqref{1}, an apt notion of generalised solutions recently proposed for fully nonlinear systems. Our $\\mD$-solutions to \\eqref{1} are $W^{1,\\infty}$-submersions corresponding to \"critical points\" of \\eqref{2} and are obtained without any convexity hypotheses. Along the way we establish a result of independent interest by proving existence of strong solutions to the singular value problem for general dimensions $n\\neq N$.", "revisions": [ { "version": "v1", "updated": "2016-04-15T07:37:13.000Z" } ], "analyses": { "keywords": [ "vectorial calculus", "d-solutions", "variations", "l-infinity", "dacorogna-marcellini baire category method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160404385C" } } }