{ "id": "1604.04273", "version": "v1", "published": "2016-04-14T19:39:35.000Z", "updated": "2016-04-14T19:39:35.000Z", "title": "Concordance of certain 3-braids and Gauss diagrams", "authors": [ "Michael Brandenbursky" ], "comment": "8 pages, 4 figures", "categories": [ "math.GT" ], "abstract": "Let $\\beta:=\\sigma_1\\sigma_2^{-1}$ be a braid in $B_3$, where $B_3$ is the braid group on 3 strings and $\\sigma_1, \\sigma_2$ are the standard Artin generators. We use Gauss diagram formulas to show that for each natural number $n$ not divisible by $3$ the knot which is represented by the closure of the braid $\\beta^n$ is algebraically slice if and only if $n$ is odd. As a consequence, we deduce some properties of Lucas numbers.", "revisions": [ { "version": "v1", "updated": "2016-04-14T19:39:35.000Z" } ], "analyses": { "keywords": [ "concordance", "standard artin generators", "gauss diagram formulas", "braid group", "natural number" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160404273B" } } }