{ "id": "1604.04040", "version": "v1", "published": "2016-04-14T06:27:23.000Z", "updated": "2016-04-14T06:27:23.000Z", "title": "Refined elliptic tropical invariants of toric surfaces", "authors": [ "Franziska Schroeter", "Eugenii Shustin" ], "comment": "34 pages, 11 figures", "categories": [ "math.AG" ], "abstract": "F. Block and L. G\\\"ottsche introduced refined tropical invariants of toric surfaces that intertwine tropical Gromov-Witten and Welschinger invariants of toric surfaces. L. G\\\"ottsche and the first author defined refined tropical genus zero invariants that intertwine some descendant tropical invariants and broccoli invariants of toric surfaces. In this note, we extend the Schroeter-G\\\"ottsche invariants as well as descendant tropical invariants and broccoli invariants to the genus one case.", "revisions": [ { "version": "v1", "updated": "2016-04-14T06:27:23.000Z" } ], "analyses": { "subjects": [ "14N10", "14T05" ], "keywords": [ "toric surfaces", "refined elliptic tropical invariants", "tropical genus zero invariants", "refined tropical genus zero", "defined refined tropical genus" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160404040S" } } }