{ "id": "1604.03965", "version": "v1", "published": "2016-04-13T20:23:55.000Z", "updated": "2016-04-13T20:23:55.000Z", "title": "Scarcity of cycles for rational functions over a number field", "authors": [ "J. K. Canci", "Solomon Vishkautsan" ], "comment": "19 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "We provide an explicit bound on the number of periodic points of a rational function defined over a number field, where the bound depends only on the number of primes of bad reduction and the degree of the function, and is linear in the degree. More generally, we show that there exists an explicit uniform bound on the number of periodic points for any rational function in a given finitely generated semigroup (under composition) of rational functions of degree at least 2.", "revisions": [ { "version": "v1", "updated": "2016-04-13T20:23:55.000Z" } ], "analyses": { "subjects": [ "37P35", "37P05" ], "keywords": [ "rational function", "number field", "periodic points", "explicit uniform bound", "explicit bound" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160403965C" } } }