{ "id": "1604.03067", "version": "v1", "published": "2016-04-11T18:57:35.000Z", "updated": "2016-04-11T18:57:35.000Z", "title": "The transfer map of free loop spaces", "authors": [ "John A. Lind", "Cary Malkiewich" ], "comment": "49 pages, 6 figures", "categories": [ "math.AT", "math.KT" ], "abstract": "For any perfect fibration $E \\rightarrow B$, there is a \"free loop transfer map\" $LB_+ \\rightarrow LE_+$, defined using topological Hochschild homology. We prove that this transfer is compatible with the Becker-Gottlieb transfer, allowing us to extend a result of Dorabia\\l{}a and Johnson on the transfer map in Waldhausen's $A$-theory. In the case where $E \\rightarrow B$ is a smooth fiber bundle, we also give a concrete geometric model for the free loop transfer in terms of Pontryagin-Thom collapse maps. We recover the previously known computations of the free loop transfer due to Schlichtkrull, and make a few new computations as well.", "revisions": [ { "version": "v1", "updated": "2016-04-11T18:57:35.000Z" } ], "analyses": { "subjects": [ "55R12", "19D55", "16E40", "55M05" ], "keywords": [ "free loop spaces", "free loop transfer map", "smooth fiber bundle", "concrete geometric model", "pontryagin-thom collapse maps" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }