{ "id": "1604.02846", "version": "v1", "published": "2016-04-11T09:05:53.000Z", "updated": "2016-04-11T09:05:53.000Z", "title": "The space $\\dot{\\mathcal{B}}'$ of distributions vanishing at infinity - duals of tensor products", "authors": [ "Eduard A. Nigsch", "Norbert Ortner" ], "comment": "27 pages", "categories": [ "math.FA" ], "abstract": "Analogous to L.~Schwartz' study of the space $\\mathcal{D}'(\\mathcal{E})$ of semi-regular distributions we investigate the topological properties of the space $\\mathcal{D}'(\\dot{\\mathcal{B}})$ of semi-regular vanishing distributions and give representations of its dual and of the scalar product with this dual. In order to determine the dual of the space of semi-regular vanishing distributions we generalize and modify a result of A. Grothendieck on the duals of $E \\hat\\otimes F$ if $E$ and $F$ are quasi-complete and $F$ is not necessarily semi-reflexive.", "revisions": [ { "version": "v1", "updated": "2016-04-11T09:05:53.000Z" } ], "analyses": { "subjects": [ "46A32", "46F05" ], "keywords": [ "tensor products", "distributions vanishing", "semi-regular vanishing distributions", "semi-regular distributions", "scalar product" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160402846N" } } }