{ "id": "1604.02067", "version": "v1", "published": "2016-04-07T16:35:06.000Z", "updated": "2016-04-07T16:35:06.000Z", "title": "Higher moments of arithmetic functions in short intervals: a geometric perspective", "authors": [ "Daniel Hast", "Vlad Matei" ], "comment": "20 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We study the distribution in short intervals of certain arithmetic functions, including the von Mangoldt function and the M\\\"obius function, on polynomials over a finite field $\\mathbb{F}_q$. Using the Grothendieck-Lefschetz trace formula, we reinterpret each moment of these distributions as a point-counting problem on a highly singular complete intersection variety. We compute part of the $\\ell$-adic cohomology of these varieties, yielding an asymptotic bound on each moment for fixed degree $n$ in the limit as $q \\to \\infty$.", "revisions": [ { "version": "v1", "updated": "2016-04-07T16:35:06.000Z" } ], "analyses": { "subjects": [ "11T55", "11G25" ], "keywords": [ "short intervals", "arithmetic functions", "higher moments", "geometric perspective", "highly singular complete intersection variety" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160402067H" } } }