{ "id": "1604.01934", "version": "v1", "published": "2016-04-07T09:29:55.000Z", "updated": "2016-04-07T09:29:55.000Z", "title": "Fullerene graphs of small diameter", "authors": [ "Diego Nicodemos", "Matěj Stehlík" ], "categories": [ "math.CO" ], "abstract": "A fullerene graph is a cubic bridgeless plane graph with only pentagonal and hexagonal faces. We exhibit an infinite family of fullerene graphs of diameter $\\sqrt{4n/3}$, where $n$ is the number of vertices. This disproves a conjecture of Andova and \\v{S}krekovski [MATCH Commun. Math. Comput. Chem. 70 (2013) 205-220], who conjectured that every fullerene graph on $n$ vertices has diameter at least $\\lfloor \\sqrt{5n/3}\\rfloor-1$.", "revisions": [ { "version": "v1", "updated": "2016-04-07T09:29:55.000Z" } ], "analyses": { "keywords": [ "fullerene graph", "small diameter", "cubic bridgeless plane graph", "hexagonal faces", "match commun" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160401934N" } } }