{ "id": "1604.01622", "version": "v1", "published": "2016-04-06T13:42:50.000Z", "updated": "2016-04-06T13:42:50.000Z", "title": "Irreducible modules for equivariant map superalgebras and their extensions", "authors": [ "Tiago Macedo", "Lucas Calixto" ], "comment": "24 pages", "categories": [ "math.RT" ], "abstract": "Let $\\Gamma$ be a group acting on a scheme $X$ and on a Lie superalgebra $\\mathfrak{g}$. The corresponding equivariant map superalgebra $M(\\mathfrak{g}, X)^\\Gamma$ is the Lie superalgebra of equivariant regular maps from $X$ to $\\mathfrak{g}$. In this paper we complete the classification of finite-dimensional irreducible $M(\\mathfrak{g}, X)^\\Gamma$-modules when $\\mathfrak{g}$ is a finite-dimensional simple Lie superalgebra, $X$ is of finite type, and $\\Gamma$ is a finite abelian group acting freely on the rational points of $X$. We also describe extensions between these irreducible modules in terms of extensions between modules for certain finite-dimensional Lie superalgebras. As an application, when $\\Gamma$ is trivial and $\\mathfrak{g}$ is of type $B(0,n)$, we describe the block decomposition of the category of finite-dimensional $M(\\mathfrak{g}, X)^\\Gamma$-modules in terms of spectral characters for $\\mathfrak{g}$.", "revisions": [ { "version": "v1", "updated": "2016-04-06T13:42:50.000Z" } ], "analyses": { "subjects": [ "17B10", "17B55", "17B56", "17B65" ], "keywords": [ "irreducible modules", "extensions", "finite-dimensional simple lie superalgebra", "abelian group acting", "finite-dimensional lie superalgebras" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160401622M" } } }