{ "id": "1604.01620", "version": "v1", "published": "2016-04-06T13:40:44.000Z", "updated": "2016-04-06T13:40:44.000Z", "title": "Random convolution of inhomogeneous distributions with $\\mathcal{O}$-exponential tail", "authors": [ "Svetlana Danilenko", "Simona Paškauskaitė", "Jonas Šiaulys" ], "comment": "Published at http://dx.doi.org/10.15559/16-VMSTA52 in the Modern Stochastics: Theory and Applications (https://www.i-journals.org/vtxpp/VMSTA) by VTeX (http://www.vtex.lt/)", "journal": "Modern Stochastics: Theory and Applications 2016, Vol. 3, No. 1, 79-94", "doi": "10.15559/16-VMSTA52", "categories": [ "math.PR" ], "abstract": "Let $\\{\\xi_1,\\xi_2,\\ldots\\}$ be a sequence of independent random variables (not necessarily identically distributed), and $\\eta$ be a counting random variable independent of this sequence. We obtain sufficient conditions on $\\{\\xi_1,\\xi_2,\\ldots\\}$ and $\\eta$ under which the distribution function of the random sum $S_{\\eta}=\\xi_1+\\xi_2+\\cdots+\\xi_{\\eta}$ belongs to the class of $\\mathcal{O}$-exponential distributions.", "revisions": [ { "version": "v1", "updated": "2016-04-06T13:40:44.000Z" } ], "analyses": { "keywords": [ "exponential tail", "random convolution", "inhomogeneous distributions", "independent random variables", "exponential distributions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160401620D" } } }