{ "id": "1604.01302", "version": "v1", "published": "2016-04-05T15:36:24.000Z", "updated": "2016-04-05T15:36:24.000Z", "title": "Wiener's problem for positive definite functions", "authors": [ "Dmitry Gorbachev", "Sergey Tikhonov" ], "comment": "17 pages", "categories": [ "math.CA" ], "abstract": "We study the sharp constant $W_{n}(D)$ in Wiener's inequality for positive definite functions \\[ \\int_{\\mathbb{T}^{n}}|f|^{2}\\,dx\\le W_{n}(D)|D|^{-1}\\int_{D}|f|^{2}\\,dx,\\quad D\\subset \\mathbb{T}^{n}. \\] N. Wiener proved that $W_{1}([-\\delta,\\delta])<\\infty$, $\\delta\\in (0,1/2)$. E. Hlawka showed that $W_{n}(D)\\le 2^{n}$, where $D$ is an origin-symmetric convex body. We sharpen Hlawka's estimates for $D$ being the ball $B^{n}$ and the cube $I^{n}$. In particular, we prove that $W_{n}(B^{n})\\le 2^{(0.401\\ldots +o(1))n}$. We also obtain a lower bound of $W_{n}(D)$. Moreover, for a cube $ D=\\frac1q I^{n}$ with $q=3,4,\\ldots,$ we obtain that $W_{n}(D)=2^{n}$. Our proofs are based on the interrelation between Wiener's problem and the problems of Tur\\'an and Delsarte.", "revisions": [ { "version": "v1", "updated": "2016-04-05T15:36:24.000Z" } ], "analyses": { "subjects": [ "42B05", "42B10" ], "keywords": [ "positive definite functions", "wieners problem", "sharpen hlawkas estimates", "origin-symmetric convex body", "sharp constant" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160401302G" } } }