{ "id": "1604.01299", "version": "v1", "published": "2016-04-05T15:28:57.000Z", "updated": "2016-04-05T15:28:57.000Z", "title": "The phase transitions of the random-cluster and Potts models on slabs with $q \\geq 1$ are sharp", "authors": [ "Ioan Manolescu", "Aran Raoufi" ], "comment": "24 pages, 6 figures", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We prove sharpness of the phase transition for the random-cluster model with $q \\geq 1$ on graphs of the form $\\mathcal{S} := \\mathcal{G} \\times S$, where $\\mathcal{G}$ is a planar lattice with mild symmetry assumptions, and $S$ a finite graph. That is, for any such graph and any $q \\geq 1$, there exists some parameter $p_c = p_c(\\mathcal{S}, q)$, below which the model exhibits exponential decay and above which there exists a.s. an infinite cluster. The result is also valid for the random-cluster model on planar graphs with long range, compactly supported interaction. It extends to the Potts model via the Edwards-Sokal coupling.", "revisions": [ { "version": "v1", "updated": "2016-04-05T15:28:57.000Z" } ], "analyses": { "keywords": [ "potts model", "phase transition", "random-cluster model", "mild symmetry assumptions", "planar lattice" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160401299M" } } }