{ "id": "1604.00808", "version": "v1", "published": "2016-04-04T10:52:32.000Z", "updated": "2016-04-04T10:52:32.000Z", "title": "Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces", "authors": [ "Karima Ait-Mahiout", "Claudianor O. Alves" ], "categories": [ "math.AP" ], "abstract": "This work is concerned with the existence and multiplicity of solutions for the following class of quasilinear problems $$ -\\Delta_{\\Phi}u+\\phi(|u|)u=f(u)~\\text{in} ~\\Omega_{\\lambda}, u(x)>0 ~\\text{in}~\\Omega_{\\lambda}, u=0~ \\mbox{on} ~\\partial\\Omega_{\\lambda}, $$ where $\\Phi(t)=\\int_0^{|t|} \\phi(s) s \\, ds $ is an $N-$function, $\\Delta_{\\Phi}$ is the $\\Phi-$Laplacian operator, \\linebreak $\\Omega_{\\lambda}=\\lambda \\Omega,$ $\\Omega$ is a smooth bounded domain in $\\mathbb{R}^N,$ $N \\geq 2$, $\\lambda$ is a positive parameter and $f: \\mathbb{R}\\rightarrow \\mathbb{R}$ is a continuous function. Here, we use variational methods to get multiplicity of solutions by using of Lusternik-Schnirelmann category of ${\\Omega}$ in itself.", "revisions": [ { "version": "v1", "updated": "2016-04-04T10:52:32.000Z" } ], "analyses": { "keywords": [ "quasilinear problems", "orlicz-sobolev spaces", "multiplicity", "laplacian operator", "smooth bounded domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160400808A" } } }