{ "id": "1603.09373", "version": "v1", "published": "2016-03-30T20:44:43.000Z", "updated": "2016-03-30T20:44:43.000Z", "title": "Dynamical invariance for random matrices", "authors": [ "Jeremie Unterberger" ], "comment": "47 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $\\beta$. These dynamics describe for $\\beta=2$ the time evolution of the eigenvalues of $N\\times N$ random Hermitian matrices. The equilibrium partition function -- equal to the normalization constant of the Laughlin wave function in fractional quantum Hall effect -- is known to satisfy an infinite number of constraints called Virasoro or loop constraints. We introduce here a dynamical generating function on the space of random trajectories which satisfies a large class of constraints of geometric origin. We focus in this article on a subclass induced by the invariance under the Schr\\\"odinger-Virasoro algebra.", "revisions": [ { "version": "v1", "updated": "2016-03-30T20:44:43.000Z" } ], "analyses": { "subjects": [ "60B20", "60J60", "82C21" ], "keywords": [ "random matrices", "dynamical invariance", "fractional quantum hall effect", "one-dimensional n-particle coulomb gas", "equilibrium partition function" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160309373U", "inspire": 1439794 } } }