{ "id": "1603.09365", "version": "v1", "published": "2016-03-30T20:21:54.000Z", "updated": "2016-03-30T20:21:54.000Z", "title": "Gowers' Ramsey theorem for generalized tetris operations", "authors": [ "Martino Lupini" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "We prove a generalization of Gowers' theorem for $\\mathrm{FIN}_{k}$ where, instead of the single tetris operation $T:\\mathrm{FIN}_{k}\\rightarrow \\mathrm{FIN}_{k-1}$, one considers all maps from $\\mathrm{FIN}_{k}$ to $\\mathrm{FIN}_{j}$ for $0\\leq j\\leq k$ arising from nondecreasing surjections $f:\\left\\{ 0,1,\\ldots ,k+1\\right\\} \\rightarrow \\left\\{ 0,1,\\ldots ,j+1\\right\\} $. This answers a question of Barto\\v{s}ov\\'{a} and Kwiatkowska. We also prove a common generalization of such a result and the Galvin--Glazer--Hindman theorem on finite products, in the setting of layered partial semigroups introduced by Farah, Hindman, and McLeod.", "revisions": [ { "version": "v1", "updated": "2016-03-30T20:21:54.000Z" } ], "analyses": { "subjects": [ "05D10", "54D80" ], "keywords": [ "generalized tetris operations", "ramsey theorem", "single tetris operation", "common generalization", "galvin-glazer-hindman theorem" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160309365L" } } }