{ "id": "1603.09265", "version": "v1", "published": "2016-03-30T16:20:44.000Z", "updated": "2016-03-30T16:20:44.000Z", "title": "Moderate solutions of semilinear elliptic equations with Hardy potential under minimal restrictions on the potential", "authors": [ "Moshe Marcus", "Vitaly Moroz" ], "comment": "22 pages", "categories": [ "math.AP" ], "abstract": "We study semilinear elliptic equations with Hardy potential $\\mathrm{(E)} \\; -L_\\mu u+u^q=0$ in a bounded smooth domain $\\Omega\\subset \\mathbb R^N$. Here $q>1$, $L_\\mu=\\Delta+\\frac{\\mu}{\\delta_\\Omega^2}$ and $\\delta_\\Omega(x)=\\mathrm{dist}(x,\\partial\\Omega)$. Assuming that $0\\leq \\mu