{ "id": "1603.09162", "version": "v1", "published": "2016-03-30T12:59:29.000Z", "updated": "2016-03-30T12:59:29.000Z", "title": "Multifractal properties of convex hulls of typical continuous functions", "authors": [ "Zoltan Buczolich" ], "categories": [ "math.CA" ], "abstract": "We study the singularity (multifractal) spectrum of the convex hull of the typical/generic continuous functions defined on $[0,1]^{d}$. We denote by ${\\mathbf E}_ { { \\varphi } }^{h} $ the set of points at which $ \\varphi : [0,1]^d\\to {\\mathbb R}$ has a pointwise H\\\"older exponent equal to $h$. Let $H_{f}$ be the convex hull of the graph of $f$, the concave function on the top of $H_{f}$ is denoted by $ { { \\varphi } }_{1,f}( { { \\mathbf x } })=\\max \\{y:( { { \\mathbf x } },y)\\in H_{f} \\}$ and $ { { \\varphi } }_{2,f}( { { \\mathbf x } })=\\min \\{y:( { { \\mathbf x } },y)\\in H_{f} \\}$ denotes the convex function on the bottom of $H_{f}$. We show that there is a dense open subset $ { { \\cal G } } { \\subset } {C[0,1]^d}$ such that for $f\\in { { \\cal G } }$ the following properties are satisfied. For $i=1,2$ the functions $ { { { \\varphi } }_ {i,f}}$ and $f$ coincide only on a set of zero Hausdorff dimension, the functions $ { { { \\varphi } }_ {i,f}}$ are continuously differentiable on $(0,1)^{d}$, ${\\mathbf E}_{ { { \\varphi } }_{i,f}}^{0} $ equals the boundary of $ {[0,1]^d}$, $\\dim_{H}{\\mathbf E}_{ { { \\varphi } }_{i,f}}^{1}=d-1 $, $\\dim_{H}{\\mathbf E}_{ { { \\varphi } }_{i,f}}^{+ { \\infty }}=d $ and ${\\mathbf E}_{ { { \\varphi } }_{i,f}}^{h}= { \\emptyset }$ if $h\\in(0,+ { \\infty }) { \\setminus } \\{1 \\}$.", "revisions": [ { "version": "v1", "updated": "2016-03-30T12:59:29.000Z" } ], "analyses": { "subjects": [ "26B25", "26B05", "28A80" ], "keywords": [ "convex hull", "typical continuous functions", "multifractal properties", "dense open subset", "zero hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160309162B" } } }